Acute Kidney Injury (AKI) In Primary Care

Supporting early detection and consistent management

Responding to AKI Warning Stage Test Results for Adults in Primary Care: Best Practice Guidance

Think Kidneys is a national programme led by NHS England in partnership with UK Renal Registry

AKI in Primary Care

G AKI: Context and focus for primary care

- Definition, staging and association with acute illness
- Implications for patients, the NHS and primary care

G AKI: Detection in primary care

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context

KI: Management in primary care

- Think Kidneys → Think **Cause**, Think **Drugs**, Think **Fluid Status**, Think **Review**
- When to consider admission and / or renal referral

"THINK KIDNEYS

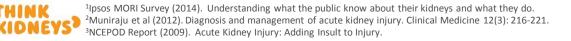
AKI in Primary Care

G AKI: Context and focus for primary care

- Definition, staging and association with acute illness
- Implications for patients, the NHS and primary care

G AKI: **Detection in primary care**

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context
- AKI: Management in primary care
 - Think Kidneys \rightarrow Think Cause, Think Drugs, Think Fluid Status, Think Review
 - When to consider admission and / or renal referral


AKI: Context and focus for primary care

What is AKI?

> A sudden reduction in kidney function (> usually coincides with onset of acute illness)

• Why is AKI important?

- > Associated with adverse outcomes for patients (> consider AKI an acute illness severity marker)
- > **Common** (\blacktriangleright more than $\frac{1}{2}$ million people in England develop AKI every year)
- **Why has a national "Think Kidneys" campaign been established to raise AKI awareness?**
- Public¹ and Healthcare Professional² awareness of AKI is poor
- UK Study (2009) found deficiencies in AKI care were common including delayed AKI recognition³

AKI: Context and focus for primary care

- Why are primary care teams being alerted to AKI?
- > Many patients in community are at risk of AKI (> require prompt review when acutely unwell)
- > Most AKI occurs in community (\triangleright $^{2}/_{3}$ of hospital AKI cases begin pre-hospital admission)¹
- What can primary care teams do to reduce patient harm caused by AKI?
- **1.** Raise AKI awareness and limit AKI risk (► AKI often asymptomatic → further delaying AKI detection)
- 2. Promote prompt AKI detection (► consider AKI early during acute illness episodes)
- **3.** Initiate simple interventions early (▶ increase chance of recovery / reduce treatment costs)
- 4. Perform post-AKI review (► detect new or progressive CKD +/- restart drugs suspended during AKI)

1 Selby et al. (2012). Defining the Cause of Death in Hospitalised Patients with AKI. PLoS ONE. 7 (11): e48580

AKI in primary care

G AKI: Context and focus for primary care

- Definition, staging and association with acute illness
- Implications for patients, the NHS and primary care

• AKI: Detection in primary care

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context
- AKI: Management in primary care
 - Think Kidneys \rightarrow Think Cause, Think Drugs, Think Fluid Status, Think Review
 - When to consider admission and / or renal referral

AKI: Definition, Staging and Association with Acute Illness

AKI definition

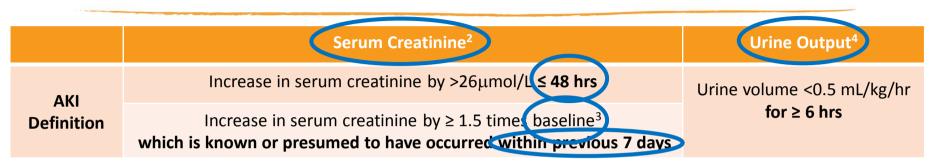
>AKI is a clinical and biochemical syndrome reflecting abrupt kidney dysfunction

>AKI is not a primary disease nor a "diagnosis"

>AKI is a heterogeneous syndrome with various causes and variable outcomes

AKI staging

>AKI stage is determined by acute changes to serum creatinine and / or urine output


CAKI usually occurs secondary to acute illness (commonly sepsis)

>Identifying underlying acute illness causing AKI is key to establishing primary diagnosis

> Treating underlying acute illness key to treating most AKI

CTHINK KIDNEYS

AKI Definition (Kidney Disease Improving Global Outcomes, KDIGO criteria¹)

²Note serum creatinine changes and not *estimated* GFR (*e*GFR) define AKI (as *e*GFR is not a reliable indicator of *true* GFR during unsteady clinical states associated with AKI) **b** Drug dosing should not be based upon *e*GFR during AKI episodes.

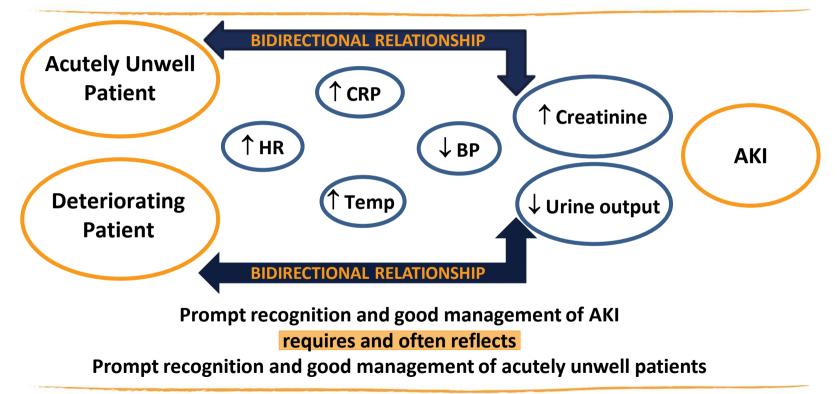
² Note timescale of creatinine change is central to AKI definition \rightarrow if no recent preceding blood test then incorporate clinical context to determine if creatinine change likely to have occurred during preceding week (ie. 'acutely').

³ 'Baseline' creatinine value should be considered as the patient's 'usual' creatinine when clinically well \rightarrow determine by reviewing patient's previous blood results within clinical context. Assume normal baseline if no previous blood tests.

⁴ In practice **urine output criteria** can only be applied to hospitalised patients who are catheterised - **but a reliable history of low or absent urine output should alert the clinician to the possibility of AKI**.

¹ Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical
 Practice Guideline for Acute Kidney Injury. Kidney International Supplement 2012;2(1):1–138.

AKI Staging (Kidney Disease Improving Global Outcomes, KDIGO criteria¹)


AKI Stage	Serum Creatinine	Urine Output
Stage 1	Increase in serum creatinine by >26 μ mol/L \leq 48 hrs OR an increase in serum creatinine by \geq 1.5 x baseline ²	urine output <0.5mL/kg/hr for 6-12hrs
Stage 2	Increase in serum creatinine by $\ge 2 \times baseline^2$	urine output <0.5mL/kg/h for ≥12hrs
Stage 3	Increase in serum creatinine by $\ge 3 \times \text{baseline}^2$ OR an increase in serum creatinine by ≥ 1.5 baseline to $> 354 \ \mu \text{mol/L}$	urine output <0.3mL/kg/h for ≥24hrs OR anuria for ≥12 h

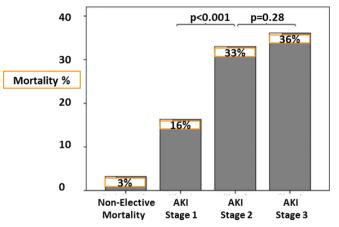
² When creatinine change is known or presumed to have occurred within previous 7 days

¹ Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplement 2012;2(1):1–138.

AKI as a patient safety barometer associated with acute illness

CTHINK KIDNEYS

AKI in primary care


G AKI: Context and focus

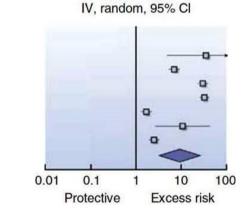
- Definition, staging and association with acute illness
- Implications for patients, the NHS and primary care
- **G** AKI: **Detection in primary care**
 - Identifying patients at risk of AKI
 - Interpreting AKI warning stage test results within clinical context
- AKI: Management in primary care
 - Think Kidneys → Think **Cause**, Think **Drugs**, Think **Fluid Status**, Think **Review**
 - When to consider admission and / or renal referral

AKI Patient Implications: Independently associated with adverse acute and chronic outcomes

- AKI associated with increased patient mortality
- **6** Odds of **death** \sim AKI **severity** in UK Study¹

Other studies show association with death persists if

Acute and chronic co-morbidities accounted for²


Patients followed up post discharge / longer term³

¹Selby N. et al. (2012). Use of Electronic Results Reporting to Diagnose and Monitor AKI in Hospitalized Patients. CJASN. 7:533-540.
²Chertow et al. (2005). Acute Kidney Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients. J Am Soc Nephrol 16: 3365–3370.
³Coca et al. (2012). Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448.

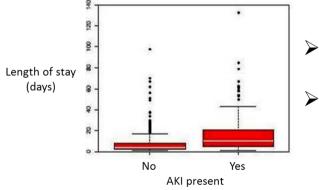
AKI Patient Implications: Independently associated with adverse acute and chronic outcomes

AKI associated with increased patient morbidity

Meta-analysis shows AKI is risk factor for CKD¹ Hazard ratio

Pooled hazard adjusted ratios for <u>CKD</u> post-AKI¹

CKD also associated with 1 risk of end-stage renal failure¹, cardiovascular disease and death²


¹ Coca et al. (2012). Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448.

² Chronic Kidney disease Consortium (2010). Association of eGFR and albuminuria with all-cause & cardiovascular mortality. Lancet 375: 2073-2081.

AKI <u>NHS Implications</u>: Significant additional impact on Healthcare Resources

G AKI **commonly complicates acute illness** and hospital admissions

6 AKI associated with **25.4% of unselected emergency admissions** to a large UK acute hospital Trust¹

- AKI group LOS **almost 3x higher** than non AKI group (10 vs 4 days)¹
- AKI group more often **required critical care beds** $(8.1\% \text{ vs } 1.7\%)^1$

AKI associated with complex treatments such as dialysis (> may be required permanently)

G AKI significantly increases healthcare costs as a consequence of these complications

¹ Challiner et al. (2014). Incidence and consequence of AKI in unselected emergency admissions to a large acute UK hospital trust. BMC Nephrology. 15:84 KIDNEYS

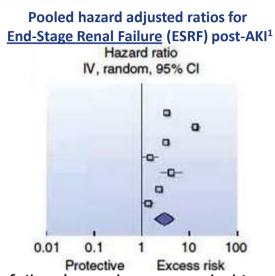
AKI aspirations for primary care teams

- Primary care teams well located to:-
- 1. Raise AKI awareness and limit AKI risk in "at risk" patient groups
- 2. Detect AKI and deliver simple interventions early (▶ to limit AKI severity and duration)
- 3. Undertake post AKI review to
 - a. Detect new or worsening Chronic Kidney Disease post AKI
 - **b.** Restart drugs suspended during AKI (▶ especially if prognostic benefit)
 - **c.** Limit risk of further AKI (▶ patient / carer advice where appropriate)

AKI and primary care: Prompt detection and management

C Two National AKI Patient Safety Alerts aim to promote AKI care in the community

- Mandates national automated AKI detection system to generate AKI warning alerts alongside blood tests
- Pilot studies indicate Full Time Equivalent GP expects about
 one AKI e-alert every 1-2 months (>¹/₂ likely AKI Stage 1)



- Health care staff should be signposted to Think Kidneys AKI resources (hyperlinks to relevant resources at foot of slides)
- Resources include AKI guidelines to support appropriate response to AKI warning alerts by Primary Care Teams

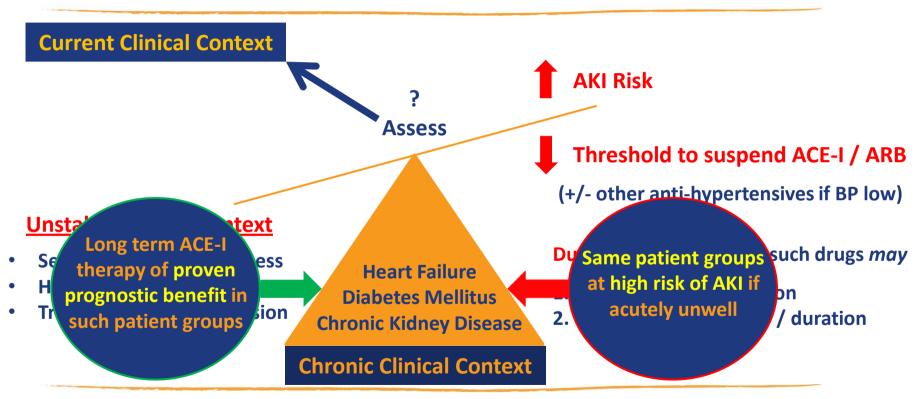
THINK KIDNEYS C THINK KIDNEYS Resource: Full Primary Care AKI Guidelines LINK

AKI and Primary Care: Post AKI review

- **G** AKI also associated with **adverse long term outcomes**
- Renal Health: AKI is associated with new or worsening CKD, including ESRF
- especially if severe or multi-hit AKI in
- 1. Elderly patients
- 2. Patients with diabetes
- 3. Patients with pre-existing CKD

- General Health: Drugs with prognostic long term benefit (eg ACE-I for heart failure) may be suspended in clinical context of acute illness and AKI
- Iong term prognostic benefit of such drugs lost if not restarted post AKI

THINK KIDNEYS³ ¹Coca et al. (2012). Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448.


AKI and Primary Care: Post AKI review

Fost AKI reviews consider:-

- 1. Monitoring for new or worsening CKD especially if creatinine has not returned to baseline or other CKD risk factors. NICE guidelines advocate monitoring renal function for 3 years post AKI.
- Restarting drugs with prognostic benefit once clinical context improves and stabilises / acute illness resolved ► unless compelling contraindication to drug remains (or ongoing AKI risk > drug benefit).
- **3. Onward drug adjustments tailored** to chronic disease **and** acute clinical context (**>** see 2 next slides)
- 4. Patient / carer advice to limit further AKI episodes (▶ utilise AKI Patient Leaflets, links below)
 - > Encourage early medical contact to assess blood pressure, renal function and medications if
 - a. Acutely unwell
 - b. Unable to maintain good fluid intake
 - c. Reduced urine output noted

C THINK KIDNEYS <u>Resources</u>: Restarting drugs <u>LINK</u>, Sick Day Guidance for Drugs <u>LINK</u>, Patient Advice Leaflets for those who <u>have sustained</u> AKI <u>LINK</u> and those at <u>persistent risk</u> of AKI <u>LINK</u>

Clinical Context and ACE-Inhibitors

Clinical Context and ACE-Inhibitors

Current Clinical Context

Stable Clinical Context

- Recovery from acute illness / clinically stable
- Restoration of volume / BP
- Post AKI / Renal function stabilised

Heart Failure Diabetes Mellitus Chronic Kidney Disease

Chronic Clinical Context

Prognostic benefit of ACE-I / ARB

- Threshold to resume ACE-I / ARB
- Try to restart drug if strong indication
- ➢ Review patient & bloods ≤ 1-2 weeks
- See resource below but generally:
- <u>Initial</u> creatinine rise ≤ 30% often OK
- If creatinine rise ≥ 30% / progressive:
- 1. Suspend drug and review patient
- 2. Consider renal opinion
 - If indication for ACE-I is <u>heart failure</u> **consider cardiology opinion**

DNEYS THINK KIDNEYS RESOURCE: ACE-Inhibitor and diuretic use in Primary Care LINK

3.

ACE-I / ARB initiation or dose up-titration in Primary Care

Initial Assessment

- 1. Ensure clinical context is stable ► consider patient 'sick day' advice.
- 2. Use Immediate pre-treatment creatinine as baseline creatinine.
- 3. Arrange repeat blood tests within 1-2 weeks.

Serum creatinine rise > 15% but < 30% from baseline

- 1. Continue drug but arrange to re-assess clinical status, BP and bloods within 1-2 weeks.
- Consider ↓ other BP-lowering drugs if sBP <120, including diuretics if evidence of hypovolaemia.
- 3. Continue drug if creatinine stabilises on repeat testing (< 30% above pre-treatment baseline).

Continuing ACE-I in chronic heart failure sometimes may be overall beneficial even if creatinine rise > 30%

Serum creatinine rise > 30% from baseline

- 1. Promptly re-assess clinical, fluid and BP status.
- Consider ↓ other BP-lowering drugs if sBP <120, including diuretics if evidence of hypovolaemia.
- Repeat bloods ≤ 5-7 days ► if renal function remains > 30% despite above measures:
 - 1. Stop drug and consider local renal opinion
 - 2. If indication for drug is heart failure also obtain advice from local heart failure team

THINK KIDNEYS RESOURCE: ACE-Inhibitor and diuretic use in Primary Care LINK THINK KIDNEYS RESOURCE: Patient Sick Day Guidance for Drugs LINK

AKI in primary care

- AKI: Context and focus
 - Definition, staging and causes
 - Implications for patients, the NHS and primary care

G AKI: Detection in primary care

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context
- AKI: Management in primary care
 - Think Kidneys → Think **Cause**, Think **Drugs**, Think **Fluid Status**, Think **Review**
 - When to consider admission and / or renal referral

AKI in Primary Care: Patients at risk of AKI in Community

Situation Specific - Exposure

- Any acutely unwell patient is at acute risk of AKI
- **C** AKI vigilance in **clinically unstable**, especially if
- ➢ Hypovolaemia, dehydration, reduced oral intake
- Absolute hypotension (sBP < 90 mmHg)</p>
- Relative hypotension (\$\frac{40}{40}\$ mmHg from baseline BP)
 Sepsis
- ➢ Recent operation or iodinated contrast scan
- >NSAIDs, BP-lowering \pm diuretic drug use \leq 1week

Patient Specific - Susceptibility

- Many patients **remain at persistent AKI risk**
- AKI vigilance in 'at risk' communities
- Older age patients (especially with polypharmacy)
- Co-morbidities (eg. CKD, DM & Heart Failure)
- ➢ Psycho-social setting (eg. In care home, ↓ mobility / dementia → unable to self regulate fluid intake)
- **Consider risk reduction strategies** in such groups
- > promote self care (or carers) to avoid dehydration
- similar advice / resources as for "Post AKI review"

C THINK KIDNEYS Resource: Advice on <u>communities at risk</u> of AKI <u>LINK</u>

AKI in primary care

- AKI: Context and focus
 - Definition, staging and causes
 - Implications for patients, the NHS and primary care

G AKI: Detection in primary care

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context
- AKI: Management in primary care
 - Think Kidneys \rightarrow Think Cause, Think Drugs, Think Fluid Status, Think Review
 - When to consider admission and / or renal referral

Interpreting AKI warning stage test results in Primary Care: Clinical context is Key

A national automated AKI detection system aims to improve early recognition of AKI

Presentation of AKI warning alerts depends upon Pathology System used, examples below:

Saltun	125	mol/L	1	133 to 146	1
Potassium	4.2	mmol/L	(3.5 to 5.3)
Bicarbonate	28	mmol/L	(22 to 29)
Chloride	87	mmo1/L	(95 to 108)
Urea	25.6	mmo1/L	C	2.5 to 7.8)
Creatinine	611	umol/L	(50 to 120)
eGFR/ 1.73/1^2	6	ml/min			
AKI Warning stage	3				

Sodium	145	mmol/L	133 - 146
Potassium	 3.7	mmol/L	3.5 - 5.3
Bicarbonate	26	mmol/L	22 - 29
Urea	22.8	mmol/L.	2.5 - 7.8
Creatinine	182	umol/L	50 - 120
eGFR/ 1.73M^2	31	ml/min	
Chloride	107	mmol/L	95 - 108
AKI Warning stage	2	CONTRACTOR OF STREET	100000000

Alert system relies upon computerised interpretation of blood results in isolation from clinical context

SAKI is not merely a 'biochemical finding' ► do not rely upon alert system to detect all AKI cases

Always review current and previous blood results within clinical context in order to validate AKI alert

CTHINK KIDNEYS

Interpreting AKI warning stage test results in Primary Care: Clinical context is Key

- ✓ A positive AKI alert simply alerts clinician to possibility of AKI ► false positives can occur (see table below)
- A negative AKI alert does not always rule out AKI
 false negatives can occur (see table below)

False positive examples	False negatives example	
Recent Pregnancy: Creatinine falls during pregnancy ► creatinine rise expected / normal post delivery.	Previous AKI within last year: Algorithm may calculate spuriously high baseline creatinine for patient.	
Drugs (eg. trimethoprim) inhibiting tubular creatinine secretion: Can cause creatinine rise whilst GFR stable.		
Recent IV fluid: ► spuriously low baseline creatinine.		
If alert unexpected and stable clinical context > consider repeating bloods within 48-72hrs to determine		

- If alert unexpected and stable clinical context ► consider repeating bloods within 48-72hrs to determine whether any creatinine changes are truly dynamic (AKI) or relatively stable / false positive.
- If no alert issued though high clinical suspicion of AKI / acute illness ► it especially important for clinician to review current and previous blood results before ruling out AKI.
 - Content of the second secon

Interpreting AKI warning stage test results in Primary Care: Infrastructure & Process

Any automated detection system is only effective if leads to timely and appropriate intervention

Cetection system does <u>not</u> issue interruptive alert and in isolation does <u>not</u> ensure timely intervention

- **Correct effective utilisation** of automated AKI system thus requires clinicians:-
- 1. Actively review alerts within clinical context in timely fashion
 - > Practices should ensure clinicians reviewing alerts know reason why blood tests were taken
 - > Particular challenge if results reviewed by 'out of hours' services
- 2. Respond to alerts and clinical context with timely intervention
 - > Think Kidneys Primary Care Resource includes **recommended alert response times** (> next slide)

KEYS C THINK KIDNEYS Resource: Full Primary Care AKI Guidelines <u>LINK</u>

Table 1: Recommended response times to AKI Warning Stage Test Results for Adults in Primary Care

Also consider if other features present to prompt earlier review / hospital admission				
Confirm or refute automated AKI Test Result by	V LOW Pre-test Pro	bability of AKI	HIGH Pre-test Probability of AKI	
1. What was <u>clinical context</u> when the	blood test was taken?	3. Are <u>factors</u> pr	resent to suggest <u>acute</u> kidney dysfunction?	
Stable Clinical Context Unstable Clinical Context		Clinical Features Biochemical Features		
Chronic disease / drug monitoring Asse	ssment of acute illness	Reduced urine outp	out Creatinine rise from <u>recent</u> baseline	
(Assume unstable clinical context if clinica	al context unknown)	Patient unwell	<u>Further</u> creatinine rise on repeat test	
2. Are <u>risk factors</u> for AKI pr	resent?	4. Are addition	nal factors present to prompt <u>early</u> review?	
Chronic AKI Risk Factors	Acute AKI Risk Factors	Patient Factors	Clinical / Biochemical factors	
Chronic Kidney Disease	Acute illness	Stage 4 or 5 CKD	Patient unwell	
Chronic Heart Failure / Liver Disease	New drug started	Kidney transplant r	recipient Serum K+ ≥ 6.0 mmol/l	
Diabetes Mellitus F	Poor oral fluid intake	Frail / co-morbiditie	es Likely intrinsic kidney disease	
Cognitive / Neurological Disease	Recent previous AKI	Urinary tract obstru	uction	

Providing access to salient clinical data when taking blood tests via laboratory forms, medical records or handover will support timely appropriate response \rightarrow especially when alert reviewed by out of hours GP unfamiliar with patient

AKI in primary care

- AKI: Context and focus
 - Definition, staging and causes
 - Implications for patients, the NHS and primary care

G AKI: Detection in primary care

- Identifying patients at risk of AKI
- Interpreting AKI warning stage test results within clinical context

G AKI: Management in primary care

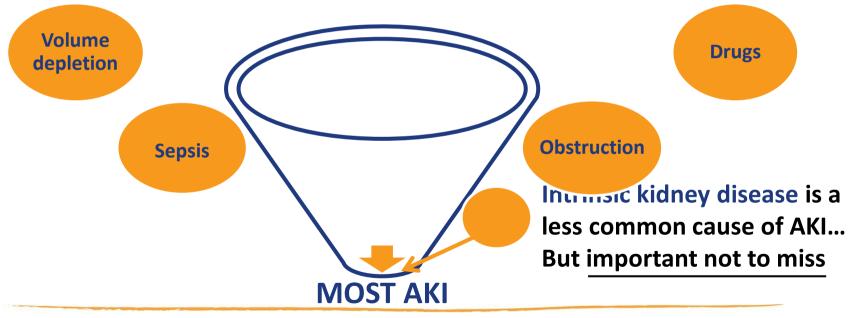
- Think Kidneys → Think **Cause**, Think **Drugs**, Think **Fluid Status**, Think **Review**
- When to consider admission and / or renal referral

CTHINK KIDNEYS

Common causes of AKI in Primary Care: Pre-renal and Post Renal AKI

AKI: <u>Pre-renal</u> Renal Insults

- **Kidney function** requires **adequate renal perfusion**
- 6 80-90% of all AKI due to acute illness causing a significant / sustained reduction in renal perfusion:-
- > Vasodilatation and hypotension due to sepsis
- > ECV loss due to diarrhoea & vomiting, or bleeding
- > Hypotension due to acute heart failure
- Some **drugs** may magnify AKI during such states


AKI: Post-renal Renal Insults

- **Kidney function** requires **adequate urine drainage**
- **C** \downarrow threshold for early renal USS in patients reporting \downarrow urine output, especially if unwell +/- history of :-
- Males with enlarged prostates
- Renal calculi
- Pelvic or abdominal masses
- Contraction of the second structure of the second s

C THINK KIDNEYS Resource: AKI & Drugs Guideline LINK

AKI Causes: Pre-renal and Post-renal account for majority of AKI

Addressing these 4 common drivers of AKI will address majority (> 90%) of AKI

AKI Causes: When to suspect Intrinsic Renal Disease

Contrinsic Renal Disease is a less common cause of **AKI** (\leq 5%)

Important not to miss > may benefit from early renal referral

Group of disorders reflecting toxin and / or immune-mediated kidney damage

Characteristics of the set of th

✓ Myeloma and Tubulo-Interstitial Nephritis (TIN) exceptions ► can be present with normal urine dip

Especially consider intrinsic renal disease as cause of AKI if:-

- 1. No common / obvious cause for AKI (ie. sepsis, volume depletion, drugs or obstruction) and / or
- 2. Urine dip +ve for protein +/- blood and / or
- 3. Clinical features of nephritis or systemic disease causing AKI present (▶ see next slide)

AKI Causes: When to suspect Intrinsic Renal Disease

Clinical Clues and Screening for intrinsic renal disease in AKI	
---	--

Clinical context	Potential diagnosis	Example screening tests
Rash +/- arthralgia	SLE, vasculitis, HSP, cryoglobulinaemia	ANA, ANCA, \downarrow complement
Haemoptysis	Anti-GBM disease, vasculitis	Anti-GBM Ab, ANCA
Crush injury / long lie	Rhabdomyolysis	Creatine kinase
Haemolysis & \downarrow platelets	Thrombotic microangiopathy (TTP, HUS)	Blood film, LDH
Severe hypertension	Malignant hypertension	Fundoscopy
Vascular intervention	Cholesterol embolisation	↓ Complement, ↑eosinophils
Recent chemotherapy	Tumour lysis syndrome	Uric acid level
↑ Ca ²⁺ +/- bone pain	Multiple myeloma	Myeloma screen
Recently started new drug	Tubulo-Interstitial Nephritis (TIN)	†Eosinophils (not always)

Table 2: Management of AKI in Primary Care **AKI & Drugs Guidelines LINK** "Think" "Think" "Think" "Think" Cause Medication Fluids **Review Tailor fluid advice Review drugs** Time next review to **Review patient** within clinical context clinical & chemical context to clinical context within clinical context Could drug be driving AKI? If hypovolemic consider if **History of acute Illness?** Consider early review (< 12 > Urine output +/- BP low? hours) +/- admission if > Think suspend drug? eg > Think Sepsis Can patient drink more? Patient unwell NSAIDs > Think Hypotension > Are IV fluids required? **BP drugs if low BP** Stage 3 AKI **Diuretics if dehydrated** K⁺ >6.5 (not haemolysed) **Positive Urinalysis?** If fluid overloaded consider Risk of lung oedema **UTI symptoms absent? Could drug accumulate?** If risk of lung oedema? **Multisystem symptoms?** > Think change dose? eg Is patient passing urine? **Consider repeating bloods:-**Think intrinsic disease **Diabetic medication** Are diuretics indicated? \leq 72 hrs for stage 1 AKI \leq 24 hrs for stage 2 AKI Digoxin **Urinary Tract Symptoms?** ≤ 12 hrs for stage 3 AKI • Opiates / gabapentin Palpable bladder? and **Consider urgent USS** > Think obstruction Could new drug cause AKI? Ensure clinical context for > Think causes of TIN ? eg repeat bloods handed over • NSAIDs, antibiotics to those reviewing results Proton pump inhibitors

THINK KIDNEYS Resource:

Contact Think Kidneys

How to find out more

Karen Thomas Think Kidneys Programme Manager UK Renal Registry Karen.Thomas@renalregistry.nhs.uk

Teresa Wallace Think Kidneys Programme Coordinator UK Renal Registry Teresajane.Wallace@renalregistry.nhs.uk Richard Fluck National Clinical Director for Renal NHS England Richard.fluck@nhs.net

Joan Russell Head of Patient Safety NHS England Joan.russell@nhs.net

Ron Cullen Director UK Renal Registry Ron.cullen@renalregistry.nhs.uk www.linkedin.com/company/think-kidneys www.twitter.com/ThinkKidneys www.facebook.com/thinkkidneys www.youtube.com/user/thinkkidneys www.slideshare.net/ThinkKidneys www.thinkkidneys.nhs.uk

