## Kidney Quality Improvement Partnership (KQuIP)

Introduction to QI what is it and what tools can be used to support it



In health care, quality improvement (QI) is the **framework** we use to systematically **improve the ways care is delivered to patients**. Processes have characteristics that can be **measured**, **analysed**, **improved**, **and controlled**. QI entails continuous efforts to achieve stable and predictable process results, that is, to reduce process variation and **improve the outcomes of these processes both for patients and the health care organization and system**. Achieving sustained QI requires commitment from the entire organization, particularly from top-level management.



### **Quality Improvement – What it feels like?**





## **The NHS Change Model**



- Plentiful supply of QI tools
  - Each add their own value
  - Common tools used:
  - Process map
- Driver diagrams
- Fishbone
- Plan, Do, Study, Act (PDSA cycles)



Process mapping is used to **visually demonstrate** all the steps and decisions in a particular process. A process map or flowchart describes the **flow of materials and information**, **displays the tasks associated with a process**, **shows the decisions that need to be made** along the chain and shows the **essential relationships** between the process steps.



### QI – How to process map

#### 1. Define and agree the process to be mapped

The objective is to get everyone's view of the issues and create:

»Problem Statement

»Target Statement

#### 2. Identify and agree the metrics

Establish the Key Performance Indicators (measures) that will tell whether a process has improved

#### 3. Identify a team and team leader

#### 4. Map the current activities

Create a current state map, this is how the process currently runs. Record it as it is even if it is "not as it should be"



### QI - How to build a map (2)

Use these simple questions to understand each step in the process



If you can answer all 6 questions about every step then you understand that step



### QI – process map





- A driver diagram illustrates a "theory of change" that can be used to plan improvement activities.
- A visual display of a team's theory of what drives or contributes to achievement of a project aim
- Translates a high level goal into a logical set of related goals and sub-projects



### **QI - Driver Diagram Template**





### How many people have tried to make an omelette?





### **QI - MAGIC Driver Diagram**







- For 45 mins start to develop your unit's process map **Or** driver diagram for needling/ cannulation
- Remember You will not complete this today
- Be prepared to feedback to the rest of the room







## Kidney Quality Improvement Partnership (KQuIP)

### **Quality Improvement Measurement: Embedding and Using Data**

**Ron Cullen** 





## **Measurement for Improvement**

- What is QI measurement
- Structure, process and balancing measures
- **Using run charts**



### **Measurement for Improvement**





### **7** Steps of Improvement



- 1. Decide the Aim
- 2. Choose Measures
- 3. Define Measures
- 4. Collect Data
- 5. Analyse and Present
- 6. Review measure

7. Repeat 4-6



## QI v Research Measurement

#### QI

- Follows practice, not individual patients
- Sample frequently and small often different patients
- Pragmatic what can I achieve
- **Complements everyday practice**
- Iterative develops in response to need
- Minimalistic

#### Research

- **C** Follows effect on individual patients
- Powered samples with infrequent measures
- Rigorous
- Eliminates bias form everyday practice
- Oictated and rigid
- Comprehensive



# What are QI measures?

### **Specific**

Defined

### Measureable

### Actionable

They will demonstrate change

Focussed

Related to objectives

#### Consistent

Application, but also sampling

#### Iterative

Develop and expand as you identify what you need to know



### How do you identify your measures?

- What are you aiming to change?
- What do you need to know?
- What will tell you what has changed?
- What matters to patients?
- What are you going to put in to a graph?
- Short and long term measures

How will we know that a change is an improvement?



### **Outcome measures**

- Focus on clinical outcomes
- Have we made things better for patients?
- 6 The ultimate aim
- Often take time to demonstrate results
- Selection bias
- Historically not patient centred





### **Process Measures**

- What has changed in practice?
- Have you changed your processes?
- Assumes process change will lead to positive results
- Often provide faster results







# **Balancing Measures**

- Identify any unintended consequences
- Generally negative
- Ensure you detect the full consequences of change





# **Run Charts**





# **Benefits of Run Charts**

- They help improvement teams formulate aims by depicting how well (or poorly) a process is performing.
- They help in determining when changes are truly improvements by displaying a pattern of data that you can observe as you make changes.
- Control of the second secon



# **Interpreting run charts**

- **G** Four Rules to interpret a Run Chart
- Rule One Shift
- Rule two Trend
- Rule Three Runs
- Rule Four Astronomical



### **Interpreting run charts – Rule 1 SHIFT**

## 6 or more plots





## **Interpreting run charts – Rule 2 TREND**

### 5 or more points in same direction





### Interpreting run charts – Rule 3 RUNS too many/too few plots





### **Interpreting run charts – Rule 4**

# **ASTRONOMICAL**





### Applying Context to your Results Annotations – data labels



#### "THINK KIDNEYS"

# **Finally**

- **C** Review your measures:
- Is there anything you want to change?
- Is there anything you want to add
- What challenges might you experience in collecting your measures?
- How could you overcome these?
- How are you going to engage your staff in measurement and the results?

